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ABSTRACT 

Given a set of cadastral traverse measurements reduced to a local plane, grid 

coordinates ( ),E N  can be computed in two ways: (i) reduce the traverse 

measurements to a set of plane bearings and distances on the Universal Transverse 

Mercator (UTM) projection plane and then use plane trigonometry or (ii) compute 

geodetic coordinates ( ),φ λ  directly using the direct and inverse cases on the ellipsoid 

and then transform these to grid coordinates.  The first method (computation on the 

UTM plane) generally requires iteration and is slow; the second method (computation 

on the ellipsoid) is quicker.  If the survey area is relatively small, say less the 25 

square kilometres, certain approximations may be made that makes the first way a 

relatively simple exercise that avoids the need to deal with geodetic coordinates. 

The Intergovernmental Committee on Surveying and Mapping (ICSM) and 

Geoscience Australia have provided Microsoft® Excel spreadsheets for the calculations 

and this paper describes the method of computation suitable for cadastral surveys of 

limited extent. 

 

 

INTRODUCTION 

In Australia, topographic mapping and coordination is based on rectangular 

coordinate grids (east E, north N) overlaying conformal projections of latitudes  

and longitudes λ  of points related to geodetic datums.  There are 

φ
two geodetic 

datums of interest: the new Geocentric Datum of Australia (GDA) and the old 

Australian Geodetic Datum (AGD), one conformal map projection: the UTM, and 

two grids: the new Map Grid Australia (MGA) and the old Australian Map Grid 
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(AMG).  Hence we have the coordinate "pairs" AGD/AMG and GDA/MGA.  There 

have been several "realizations" of geodetic datums in Australia – a realization being 

the actual determination of coordinates ( ),φ λ  related to a reference ellipsoid, by the 

mathematical adjustment of measurements between stations in the national geodetic 

network.  The first of these was in 1966 and the second in 1984; both being 

realizations of the AGD and known as AGD66 and AGD84 with grid coordinates 

designated AMG66 and AMG84.  The AGD is a topocentric datum that has now 

been superseded by the GDA with a realization designated GDA94 with grid 

coordinates MGA94.  In 1995 the Australian government proclaimed the new datum 

and produced a geodetic coordinate set designated GDA94 referred to the reference 

ellipsoid of the Geodetic Reference System 1980 (GRS80) and located with respect to 

the International Terrestrial Reference Frame 1992 (ITRF92) at the epoch 1994.0. 

 

In Australia, coordinate transformations ( ), ,E Nφ λ ⇔  as well as calculation of grid 

convergence  and point scale factor k are defined by Redfearn's formula (Redfearn 

1948).  Calculations using these formula can be easily done using Microsoft

γ
® Excel 

spreadsheets available on-line via the Internet at the Geoscience Australia website 

(http://www.ga.gov.au/) following the links to Geodetic Calculations then Calculate 

Bearing Distance from Latitude Longitude.  At this web page the spreadsheet Redfearn.xls is 

available for use or downloading.  Alternatively, the ICSM has produced an on-line 

publication Geocentric Datum of Australia Technical Manual Version 2.2 (GDA 

Technical Manual, ICSM 2002) with a link to Redfearn.xls  

 

Computations on the reference ellipsoid are divided into two cases, (i) the direct case: 

given  of point 1 and the azimuth  and geodesic distance s to point 2, compute 

 of point 2, and (ii) the inverse case: given  of points 1 and 2, compute the 

azimuth and geodesic distance between them.  The direct and inverse cases on the 

ellipsoid are equivalent to the familiar plane coordinate calculations "radiations" and 

"joins".  Excel spreadsheets for the direct and inverse cases on the ellipsoid are 

available at the Geoscience Australia website following the links to Geodetic Calculations 

then Calculate Bearing Distance from Latitude Longitude.  At this web page the spreadsheet 

Vincenty.xls is available for use or downloading.  Alternatively, the GDA Technical 

Manual has a link to Vincenty.xls  This paper is not concerned with computations on 

the ellipsoid, instead, since the survey area is limited in extent, all computations will 

be done on the UTM projection plane using a simplified approach. 

,φ λ α
,φ λ ,φ λ
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The GDA Technical Manual is a source of valuable information, references, 

guidelines, computation formula, and Excel spreadsheets.  Also, two recent 

publications may be useful; one in the Trans Tasman Surveyor by Will Featherstone 

and Jean Rüeger (Featherstone & Rüger 2000) and the other in The Australian 

Surveyor by Will Featherstone and John Kirby (Featherstone & Kirby 2002).  These 

papers describe the reduction of traverse measurements to the ellipsoid and traverse 

computations on the ellipsoid and UTM plane.  In addition to these publications, the 

present author has provided two documents for distribution: 

(i) Traverse Computation on the Ellipsoid and on the Universal Transverse 

Mercator projection (Deakin 2005a) and 

(ii) Traverse Computation: Ellipsoid versus the UTM projection (Deakin 2005b) 

 

The aforementioned publications, Featherstone & Kirby 2002 and Deakin 2005a, 

2005b make it clear that traverse computation on the ellipsoid is a quicker and more 

direct method than traverse computation on the UTM plane and by way of example 

use the familiar Buninyong–Flinders Peak traverse.  This traverse has been used for 

demonstration of computations in technical manuals published over the years: The 

Australian Map Grid Technical Manual (NMC 1972), The Australian Geodetic 

Datum Technical Manual (NMC 1985) and the current manual, The GDA Technical 

Manual. 

 

These papers and technical manuals are replete with formula and terminology that is 

often confusing to the cadastral surveyor who is not generally concerned with the 

intricacies of geodesy, computations on the ellipsoid or traversing long distances.  

Furthermore, they rarely contain "approximate methods" that may simplify 

computations for cadastral surveys of limited extent.  This paper presents a simplified 

method of computation of MGA coordinates appropriate for surveys of limited 

extent, which in the context of this paper is taken to be: 

(i) A survey of a property (rural or urban) including connections to coordinated 

reference marks that would fit within a square of 5 kilometres by 5 kilometres 

(25 square kilometres), 

(ii) Individual traverse lines are less than 1 kilometre in length, 

(iii) Traverse distances have been reduced to a local horizontal plane, i.e., the 

horizontal component of Total Station EDM distances have been recorded, 
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(iv) Traverse bearings are related in some way to an existing survey (possibly 

connected to true north or magnetic north) and within 15  of MGA grid 

bearings, 

 

Most cadastral surveys, rural or urban would fit within these parameters and in 

addition we will assume our survey area is near the boundary of a UTM zone (where 

arc-to-chord corrections and point scale factors are a maximum) and the average 

elevation of the area is approximately 500 metres above the Australian Height Datum 

(AHD). 

 

With the above restrictions, this paper will cover the necessary corrections to traverse 

measurements with explanations of any simplifications made and outline a practical 

method of computing MGA grid coordinates ( ),E N  using a calculator and the 

spreadsheets and software provided by the ICSM and Geoscience Australia. 

 

As a preliminary, a brief description of the UTM projection and some terminology 

and equations will be given.  This can also be found in Deakin (2005a) and the GDA 

Technical Manual.  This will be followed by a discussion of scale factors (point scale 

factor and combined scale factor) and the reduction of distances to the UTM 

projection plane.  Finally, a worked example of a traverse connecting two known 

points (PM's with grid coordinates) will be shown. 

 

 

THE UNIVERSAL TRANSVERSE MERCATOR (UTM) PROJECTION 

 

The Transverse Mercator (TM) projection is a conformal projection, i.e., the scale 

factor at a point is the same in every direction, which means that shape is preserved, 

although this useful property only applies to infinitesimally small regions of the 

Earth's surface.  Meridians and parallels of the ellipsoid are projected as an 

orthogonal network of curves, excepting the equator and a central meridian, which 

are projected as straight lines intersecting at right angles.  The intersection of the 

equator and the central meridian is known as the true origin of coordinates and the 

scale factor along the central meridian is constant. 

 

 4 



X

Y

λ0

equator

ce
nt

ra
l

m
er

id
ia

n

 
 

 Figure 1. Transverse Mercator projection of part of the ellipsoid. 

  Central meridian , graticule interval 15º 0 105λ =
 

The TM projection is very useful for mapping regions of the Earth with large extents 

of latitude, but for areas away from the central meridian, distortions increase rapidly.  

To limit the effects of distortion, TM projections are usually restricted to small zones 

of longitude about a central meridian .  The Universal Transverse Mercator 

(UTM) projection is a TM projection of the ellipsoid with defined zone widths of 6º 

of longitude (3º either side of the central meridian), a zone numbering system (60 

zones of 6º width, with zone 1 having a central meridian 177º W and zone 60 having 

a central meridian of 177º E), a central meridian scale factor  and a true 

origin of coordinates for each zone at the intersection of the equator and the central 

meridian. 

0λ

0 0.9996k =

To make coordinates positive quantities, each zone has an origin of East and North 

coordinates (known as the false origin) located 500,000 m west along the equator 

from the true origin for the northern hemisphere, and 500,000 m west and 10,000,000 

m south of the true origin for the southern hemisphere. 
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Figure 2 Schematic diagram of a UTM zone 

showing false origins for the northern 

and southern hemispheres 

Figure 2 shows a schematic 

diagram of a UTM zone of the 

Earth.  In the southern 

hemisphere the point P will 

have negative coordinates E',N' 

related to the true origin at the 

intersection of the central 

meridian and the equator.  P 

has positive E,N coordinates 

related to the false origin 

500,000 m west and 

10,000,000 m south of the true 

origin.  True origin and false 

origin coordinates in the 

southern hemisphere are related 

by 

  (1)
500, 000

10, 000, 000

E E

N N

′ = −

′ = −
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Figure 3 shows two points  and  on 

a UTM projection with grid coordinates 

 and .  The geodesic s 

between  and  on the ellipsoid is 

projected as a curved line concave to the 

central meridian and shown on the 

diagram as the projected geodesic.   

1P 2P

1,E N1 22,E N

1P 2P

The plane distance L is the straight line 

on the projection and 

( ) ( )2
2 1 2 1L E E N N= − + − 2  (2) 

 

Figure 3.  The projected geodesic 
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The Line Scale Factor K is defined as the ratio of plane distance to geodesic distance 

 LK
s

=  (3) 

and the Line Scale Factor can be computed from 

 
2 2 2

1 1 2 2 1 1 2 2
0 21 1

6 36m m

E E E E E E E EK k
r r

⎡ ⎤⎧ ⎫′ ′ ′ ′ ′ ′ ′ ′⎪ ⎪+ + + +⎪⎢ ⎥= + +⎨⎢ ⎥⎪⎪ ⎪⎩ ⎭⎣ ⎦

2

2
⎪⎬⎪

k

 (4) 

where  and , ν  are computed for 2 2
0mr ρν= ρ ( )1 2 2mφ φ φ= + .  Equation (4) is given 

in various technical manuals (NMC 1972, NMC 1985 and ICSM 2002) and is 

regarded as accurate to 0.1 ppm over any 100 km line in a UTM zone.  Bomford 

(1962) compared this formula with others over a known test line and recommended 

its use.  For most practical purposes, the term in braces { } in equation (4) is 

omitted as its effect is negligible.  For a line 100 km in length running north and 

south on a zone boundary the error in neglecting this term is about 0.25 ppm (NMC 

1985). 

In Figure 3, Grid North (GN) is parallel to the direction of the central meridian and 

True North (TN) is the direction of the meridian.  The angle between True North 

and Grid North is the grid convergence .  The clockwise angle from Grid North to 

the tangent to the projected geodesic at  is the grid bearing β  and the azimuth α  

is the clockwise angle from True North to the tangent to the projected geodesic.  

Grid bearing and Azimuth are related by 

γ

1P

  (5) β α γ= +

By convention, in Australia, the grid convergence is a negative quantity west of the 

central meridian and a positive quantity east of the central meridian. 

In Figure 3, the plane bearing θ  is the clockwise angle from Grid North to the 

straight line joining  and .  The plane bearing is computed from plane 

trigonometry as 
1P 2P

 1 2 1

2 1

tan E E
N N

θ −
⎛ ⎞− ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ −⎝ ⎠

 (6) 

The small angle between the tangent to the projected geodesic at  and the straight 

line joining  and  is the arc-to-chord correction  and is given by 
1P

1P 2P 12δ

 
( )( ) ( )22 1 2 1 2 1

12 2

2 2
1

6 2m m

N N E E E E
r r

δ
⎧ ⎫⎪ ⎪′ ′ ′ ′− + +⎪⎪=− −⎨⎪⎪ ⎪⎪ ⎪⎩ ⎭

27
⎪⎪⎬⎪

 (7) 
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where  and , ν  are computed for 2 2
0mr ρν= k ρ ( )1 2 2mφ φ φ= + .  Equation (7) is given 

in various technical manuals (NMC 1972, NMC 1985 and ICSM 2002) and is 

regarded as accurate to about 0.02" over any 100 km line in a UTM zone.  Bomford 

(1962) compared this formula with others over a known test line and recommended 

its use.  For most practical purposes, the term in braces { } in equation (7) is 

omitted as its effect is negligible.  For a line 100 km in length running north and 

south on a zone boundary the error in neglecting this term is about 0.08" (NMC 

1985). 

The arc-to-chord correction at , for the line  to , is designated as  and will 

be of opposite sign to  and slightly different in magnitude.  The arc-to-chord 

correction, grid bearing and plane bearing are related by 

2P 2P 1P 21δ

12δ

  (8) θ β= + δ

′

The grid convergence  (given by Redfearn's equations) and the arc-to-chord 

corrections  have a sign convention when used in Australia, given by the 

relationships in equations 

γ
δ

(5) and (8).  Often the sign of these quantities can be 

ignored and the correct relationships determined from a simple diagram. 

 

 

THE SURVEY AREA 

 

The survey area of 5 kilometres by 5 kilometres is assumed to be near a UTM zone 

boundary, that is 3° from a central meridian of longitude .  Victoria is covered by 

two UTM zones, 54 with  and 55 with  and the zone boundary 

between these zones is a meridian of longitude .  Also, Victoria is 

approximately contained within the parallels of latitude  and  

(Wilson's Promontory is further south) and a mid-latitude for Victoria could be 

assumed to be .  So, noting that 1° of latitude is approximately 111 

kilometres and 5 kilometres very roughly equates to 2.5 minutes of arc, the centre of 

our survey area is assumed to be at  and .   

0λ

0 141λ = 0 147λ =
144λ =

36φ =− 39φ =−

37 30φ ′=−

37 30Cφ ′=− 144 02 30Cλ ′ ′=

This would place it in zone 55, somewhere between Ballarat and Daylesford.  

Converting these geodetic coordinates to MGA coordinates (using Redfearn.xls with 

the parameters for the GRS80 ellipsoid) gives 238482.350 mE = , 

.  Rounding these values to the nearest 500 metres and then 5845546.570 mN =
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adding and subtracting 2500 metres (2.5 km) gives the coordinates of our survey area 

as  
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Figure 4  Coordinates of Survey Area 

 

In Figure 4 the MGA grid coordinates are shown in each corner as well as latitudes 

, longitudes λ , grid convergences  and point scale factors k.  These latter values φ γ
( ), , ,kφ λ γ  have been computed using Redfearn.xls.   

 

 

ARC-TO-CHORD CORRECTIONS 

 

Inspection of equation (7) reveals that maximum arc-to-chord corrections occur along 

north-south lines.  Now, if we consider a 5 km line whose terminal points are A and 

D (the western edge of our survey area) with a mean latitude of 

( ) 2 37 29 55.8613m A Dφ φ φ ′ ′= + =− ′  then 0mr k ρν=  where  is the 0 0.9996k =
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central meridian scale factor and  and ν  are the radii of curvature of the meridian 

and prime vertical sections of the ellipsoid respectively.  Using Redfearn.xls these 

values are (for ) ρ  and  and 

 (to the nearest metre).  The arc-to-chord correction of the line A–D 

using equation 

ρ

mφ 6359087.546 mm = 6386063.012 mmν =
6370012 mmr =

(7) is  and for the line D–A is  from this we 

may conclude that 

3.39ADδ ′′=− 3.39DAδ ′′=
for any line within our area there will be no difference between the 

magnitudes of the arc-to-chord corrections at either end of the line.  Also, the arc-to-

chord corrections (ignoring the sign) for lines of 2.5 km and 1 km along the western 

boundary will be 1
2 1.70ADδ ′′=  and 1

5 0.68ADδ ′′=  respectively since the correction for 

north-south lines (the maximum correction) is proportional to the differences in 

northing coordinates. 

 

We can also conclude that the arc-to-chord correction is insensitive to the value of 

.  For the same 5 km north-south line but with  and  

the correction is  and for  and  the correction is 

also .  From this we may conclude that a value of  (the 

average of the two values above rounded to the nearest km) is suitable for computing 

arc-to-chord corrections for any line, anywhere in Victoria.   

mr 36mφ =− 6368940 mmr =
3.39δ ′′= 39mφ =− 6371101 mmr =

3.39δ ′′= 6370000 mmr =

 

 

LINE SCALE FACTORS 

 

Line Scale Factor LK
s

=  is the ratio of plane distance L (the distance on the UTM 

projection) and the geodesic distance s (the shortest distance between two points on 

the ellipsoid) and K can be computed using equation (4).  As we can see, K is a 

function of the east coordinates of the terminal points of a line and will be a 

maximum for north-south lines on a zone boundary (where 1 2 and E ′ E ′

′

′

 will be 

maximum).  For the 5 km line A–D (the western edge of our survey area) with a 

mean latitude of  and  (to the nearest metre) 

the line scale factor .  From Figure 4, where the point scale factors are 

shown, we can conclude that the line scale factor for the line A–D is the mean of the 

points scale factors at the terminal points.  For the line A–B (the northern edge of 

our survey area) with a mean latitude of  and  

(to the nearest metre) the line scale factor .  From Figure 4, the mean 

37 29 55.8613mφ ′ ′=− 6370012 mmr =

1.0004782K =

37 28 37.4268mφ ′ ′=− 6369996 mmr =

1.0004619K =
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of the point scale factors at A and B is 1.0004619; the same as the computed line 

scale factor K, and this relationship will also apply for the diagonal lines A–C and B–

D.  From this analysis, we may conclude that the line scale factor K is equal to the 

mean of the point scale factors at the terminal points of any line in Victoria not 

exceeding 5 km in length. 

 

 

REDUCTION OF DISTANCES TO UTM PLANE DISTANCES USING THE 

COMBINED SCALE FACTOR 

 

Before any MGA coordination can take place the local plane horizontal distances H 

measured in the field must be reduced to distances s on the ellipsoid and then, by the 

application of scale factors, to plane distances L on the UTM projection plane.  In 

this paper, we are considering horizontal distances of 1 km or less and certain 

approximations will be made.  These approximations may not be applicable to longer 

lines and The GDA Technical Manual has a detailed discussion on this topic 

(reduction of distances) as have several other authors, e.g., Featherstone & Rüeger 

(2000), Deakin (2005a).  These sources of information should be consulted for longer 

lines. 

 

Figure 5 shows  and  at ellipsoidal heights  and  above the 

ellipsoid measured along the normal at  and .  The geoid is shown as a gently 

undulating surface (hugely exaggerated in this diagram) and  and  are geoid-

ellipsoid separations at  and .  N-values vary throughout Australia and can be 

computed from AUSGeoid98 by software available at Geoscience Australia's website 

(http://www.ga.gov.au/).  For our survey area, somewhere between Ballarat and 

Daylesford, the N-value is approximately 5 metres.  Instructions for computing N-

values are given in a following section. 

1P 2P 1 1h PQ= 1 2

 N+

2 2h PQ=

1P 2P

1N 2N

1P 2P

 

For most practical purposes, the relationship 

  (9) AHD heighth =

connects ellipsoidal heights, AHD heights and geoid-ellipsoid separations. 
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Figure 5.  Geometry of reduction of local plane distances to the ellipsoid 

 

In Figure 5, the ellipsoid is approximated by a circular arc of radius R  where α

1 1
2

1 12 1sin cos
Rα

ρ ν
ρ α ν α

=
+ 2

12

 is the radius of curvature at point 1 of the normal 

section in the direction  (  is azimuth and  are radii of curvature in the 

meridian and prime vertical planes respectively).  The chord distance  is the 

measured slope distance (corrected for atmospheric conditions and instrumental 

errors) and FG is the chord distance D reduced for slope at a mean height 

12α α ,ρ ν

1 2D PP=

2

2m
h hh += 1  above the ellipsoid.  [This is a reasonable assumption verified in Deakin 

(1984)].  We call the distance H  the Local Plane Distance and assume that 

this is the horizontal distance displayed by the Total Station EDM and recorded in 

the field.  s is the distance along the circular arc (approximating the ellipsoid) and c 

is the chord of the arc and s is regarded as being equivalent to the geodesic distance 

(the shortest path between two points on an ellipsoid). 

FG=

 

By similar triangles in Figure 5, the chord c is given by 

 
m

Rc
R h

α

α

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
H  (10) 
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The ratio 
m

R
R h

α

α +
 can be regarded as a scale factor that we define as Height Scale 

Factor 

 Height Scale Factor
m

R
R h

α

α

=
+

 (11) 

The chord c and the arc length s are connected by the relationship  

  c corrn s+ =

where corn is a small unknown correction and from Figure 5 

   and  2 sin 2 sin
2 2

ss R c R R
Rα α α

α

θθ
⎛ ⎞⎛ ⎞ ⎟⎜⎟⎜ ⎟= = = ⎜⎟⎜ ⎟⎟⎜ ⎜ ⎟⎜⎝ ⎠ ⎝ ⎠

 

Using the series expansion for 
3 5

sin
3! 5!
x xx x= − + −  the difference (corrn) between 

the chord c and the arc s is given as 

 
3 3

2

12
2 3! 2 24
s s scorrn s R
R R Rα

α α α

⎧ ⎫⎪ ⎪⎛ ⎞⎪ ⎪⎟⎪ ⎪⎜ ⎟= − − + = +⎜⎨ ⎬⎟⎜ ⎟⎜⎪ ⎪⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭
 

Using  (the average value for  used above) and 6370000 mRα = mr 5000 ms =  gives 

0.00012 mcorrn = .  So, for our case, since we are only concerned with distance less 

than 1000 m (1 km) we can regard the chord c and the arc s as equal and using 

equation (10) the arc distance s is given by 

 
m

Rs
R h

α

α

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
H  (12) 

Now combining the definition of Line Scale Factor K [see equation (3)] with 

equations (11) and (12) gives an expression for the Plane Distance L as 

 Line Scale Factor Height Scale Factor
m

RL Ks K H H
R h

α

α

⎛ ⎞⎟⎜ ⎟= = = × ×⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
 (13) 

The product of the two scale factors in equation (13) is known as the Combined Scale 

Factor 

  (14) Combined Scale Factor Line Scale Factor Height Scale Factor= ×

and the Plane Distance L becomes 

 Combined Scale FactorL = H×  (15) 
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ERRORS IN COMPUTATION OF L USING THE COMBINED SCALE FACTOR 

 

Errors in the computation of Plane Distances L using the Combined Scale Factor can 

be investigated by using the Theorem of the Total Differential: 
 

 If f is some function of independent variables x and y, i.e., ( ),f f x y=  then 
f fdf dx dy
x y

∂ ∂= +
∂ ∂

 where  are differentially small quantities 

and 

,  and df dx dy

 and f
x y

∂ ∂
∂ ∂

f  are partial derivatives 

 

Now the formula for computing the Plane Distance is 
m

RL K H
R h

α

α

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
 and L is a 

function of the variables  or  and mR hα ( ), mL L R hα=  and m
m

L LdL dR dh
R hα

α

∂ ∂= +
∂ ∂

.  

The differential dL  can be thought of as a small error in the computed quantity L 

induced by small errors  in the variables , mdR dhα  and mRα h .  The partial derivatives 

are 
( )

( )2
m

mR h+
L h K H
Rα α

∂ = ×
∂

 and 
( )

(2
m m

L R K H
h R h

α

α

∂ −=
∂ +

)× , and the error dL is 

given by 

 
( ) ( )

(2 2
m

m
m m

h RdL dR dh K H
R h R h

α
α

α α

⎧ ⎫⎪ ⎪⎪= − ×⎨⎪ + +⎪ ⎪⎩ ⎭
)⎪⎬⎪
 (16) 

Now, let us assume that the mean height is  and this value is known to 

be correct, i.e.,  and that the radius  is only approximate 

and could have an error  (20 km).  What is the error dL in the 

computed distance L if  and 

500 mmh =
0mdh = 6370000 mRα =

20000 mdRα =
1K = 1000 mH = ?  Equation (16) gives 

0.000246 mdL = .  We may conclude from this that a value of 6370000 mα =R  is 

suitable for calculating Height Scale Factor anywhere in Victoria. 

 

Now let us assume that  but this value could be in error by 10 metres, 

i.e., , and  with .  What is the error dL in the 

computed distance L if  and 

500 mmh =
10 mmdh =  6370000 mRα = 0dRα =

1K = 1000 mH = ?  Equation (16) gives 

, which is equivalent to 1.57 ppm for a 10 m error in the mean 

height.   

0.001570 mdL =−
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Expressed another way, the errors in L are: 

 1 ppm for , 6 mmdh ≈

 2 ppm for , 12 mmdh ≈
 3 ppm for , 18 mmdh ≈
 etc. 

 

We may conclude from this that the mean ellipsoidal height  of any line needs to 

be known within 
mh

6 m±  to make sure that errors in the computation of L using the 

Combined Scale Factor do not exceed 1 ppm (0.001 m per kilometre).  With this in 

mind, it is important that N-values are not neglected when determining the 

ellipsoidal heights h to be used in calculating Combined Scale Factors since 

 and the N-value could easily exceed 6 m.  Furthermore, if it is 

decided to adopt an average height of an area for the purposes of computing a 

Combined Scale Factor for a survey area, then care should be taken in assessing the 

effects of undulating terrain. 

AHD heighth = N+
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AN EXAMPLE COMPUTATION 
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STEELES  ROAD

X

 
 

A survey is made of a rural property "X" on Steeles Road which is to be subdivided.  

For the purposes of coordination, the survey has been extended to two PM's that 

have known MGA coordinates.  The bearing datum for the survey is related to 

original Crown Surveys and the distances shown are (local plane) horizontal 

distances.  The Reduced Levels (RL's) at traverse points and the PM's are AHD but 

are only known to the nearest metre.  The MGA Zone 55 coordinates are: 

  32 233 624.855 E 47 235 549.870 E
5 848 077.325 N 5 845 514.270 N

PM PM

 

STEP 1 

Compute the bearing and distance between the PM's 

 

PM32→PM47 Survey: 131° 11′ 36″ 3204.245 m 

 MGA: 143° 05′ 28″ 3205.454 m 

 

The difference in datum is 11° 53′ 52″ which is an approximate rotation from Survey 

to MGA plane bearings. 
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STEP 2 

Apply the difference in datum and compute an approximate set of MGA coordinates 

of the traverse points.  Nearest metre would be fine. 
 

Line Brg (approx MGA) Dist Point E N 
PM32-A 147° 12′ 12″ 849.315 A 234085 5847363 
A-B 193° 01′ 42″ 507.115 B 233971 5846869 
B-C 134° 05′ 37″ 907.330 C 234622 5846238 
C-D  84° 43′ 17″ 855.020 D 235474 5846317 
D-PM47 174° 36′ 57″ 804.955    

 

 

STEP 3 

Compute Point Scale Factors k using approximate cords and Redfearn.xls (with 

parameters of GRS80 ellipsoid and MGA zone 55) 
 

Point E N PSF k 
PM32 233624.855 5848077.325 1.0004741 
A 234085 5847363 1.0004711 
B 233971 5846869 1.0004718 
C 234622 5846238 1.0004676 
D 235474 5846317 1.0004620 
PM47 235549.870 5845514.270 1.0004615 

 

 

STEP 4 

Compute Line Scale Factors K for each line, where K is the average of the Point 

Scale Factors at either end of the line. 
 

Line LSF K 
PM32-A 1.0004726 
A-B 1.0004714 
B-C 1.0004697 
C-D 1.0004648 
D-PM47 1.0004618 

 

 

STEP 5 

(i) Compute the latitude and longitude of PM's 32 & 47 using Redfearn.xls 

  
32 : 37 28 32.9947 : 143 59 15.7288

47 : 37 29 58.0403 :144 00 30.6846

PM

PM

φ λ

φ λ

′ ′′ ′−

′ ′′ ′−

′′

′′
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(ii) Compute the geoid-ellipsoid separation N at PM's 32 & 47 using the AUSGeoid 

software available at Geoscience Australia (http://www.ga.gov.au/) following 

the links to Geodesy & GPS then AUSGeoid then Compute an N value on-line (the input 

is  to the nearest second of arc) ,φ λ

  
32 : 5.546 m

47 : 5.542 m

PM N

PM N

+

+

 Note that components of the deflection of the vertical are also computed but are 

not required. 

 

STEP 6 

Compute the mean ellipsoidal height  for each using an average N-value for the 

survey area, say 6 m (nearest metre), noting that 
mh

 AHD heighth N= + .  Then 

compute the Height Scale Factor using equation (11) with  and then 

the Combined Scale Factor using equation 

6370000 mRα =

(14) 
 

Line h (mean) HSF LSF K CSF 
PM32-A 528 0.9999171 1.0004726 1.0003897 
A-B 516 0.9999190 1.0004714 1.0003904 
B-C 496 0.9999221 1.0004697 1.0003918 
C-D 476 0.9999253 1.0004648 1.0003901 
D-PM47 476 0.9999253 1.0004618 1.0003871 

 

 

STEP 7 

Compute the Plane Distances Combined Scale FactorL H= × , where H is the 

traverse distance. 
 

Line Brg (approx MGA) Plane Dist L 
PM32-A 147° 12′ 12″ 849.646 
A-B 193° 01′ 42″ 507.313 
B-C 134° 05′ 37″ 907.685 
C-D  84° 43′ 17″ 855.354 
D-PM47 174° 36′ 57″ 805.267 

 

 

STEP 8 

Recompute the bearing and distance between the PM's 

 

PM32→PM47 Survey: 143° 05′ 28″ 3205.494 m 

 MGA: 143° 05′ 28″ 3205.454 m 
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COMMENTS ON THE COMPUTATION 

 

1. No arc-to-chord corrections have been applied.  Note that the largest arc-to-

chord correction is  (line D–PM47) 0.54′′

2. The difference in bearings in Step 8 is zero so we may assume that the 

approximate MGA bearings shown in Step 7 are, for practical purposes, MGA 

Plane Bearings.  MGA East and North coordinates can be computed for the 

traverse using the values in Step 7. 

3. The difference in the distances PM to PM in Step 8 is 0.040 m, which is an 

accuracy of 1 in 80,000 (approximately) or 12 ppm.  This may or may not be 

acceptable.  If it was required to make the traverse "fit" the PM's, then an 

adjustment that changed only the distances could be used.  (Crandall's 

adjustment is a least squares adjustment that changes only the distances) 

4. A Combined Scale Factor for the rural property "X" could be adopted as 

1.0003918 (the value for the line C–D). 

5. This is not a real job.  The data has been manufactured. 

 

 

 

 

 

 

 19 



REFERENCES 

Bomford, A.G., (1962).  'Transverse Mercator arc-to-chord and finite distance scale 

factor formulae', Empire Survey Review, No. 125, Vol. XVI, pp. 318-327, July 

1962. 

Deakin R.E., (1984).  Computation of Spheroidal Distances, Lecture Notes, RMIT 

Department of Surveying, February 1984, 20 pages. 

Deakin, R.E., (2005a).  Traverse Computation on the Ellipsoid and on the Universal 

Transverse Mercator projection, School of Mathematical and Geospatial 

Sciences, RMIT University, Melbourne, 55 pages, March 2005. 

Deakin, R.E., (2005b).  'Traverse computation: Ellipsoid versus the UTM projection', 

Presented at the Victorian/South Australia Survey Conference, Water Wine 

Wind, Mount Gambier, SA, 15-17 April 2005. 

Featherstone, W.E. and Rüeger, J.M., (2000).  'The importance of using deviations of 

the vertical for reduction of survey data to a geocentric datum', Trans tasman 

Surveyor, Vol. 1, No. 3, pp. 46-61, December 2000, with Erratum: 'The 

importance of …', The Australian Surveyor, Vol. 47, No. 1, p. 7, June 2002. 

Featherstone, W.E. and Kirby, J.F., (2002).  'Short note: Traverse computation on 

the ellipsoid instead of on the map plane', The Australian Surveyor, Vol. 47, 

No. 1, pp. 38-42, June 2002. 

ICSM, (2002).  Geocentric Datum of Australia Technical Manual – Version 2.2, 

Intergovernmental Committee on Surveying and Mapping (ICSM), February 

2002, available online at:  http://www.icsm.gov.au/icsm/gda/gdatm/index.html 

 (last accessed March 2006) 

NMC, (1972).  The Australian Map Grid Technical Manual, Special Publication 7, 

National Mapping Council of Australia, Canberra, 1972 

NMC, (1985).  The Australian Geodetic Datum Technical Manual, Special 

Publication 10, National Mapping Council of Australia, Canberra, 1985 

Redfearn, J.C.B., (1948).  'Transverse Mercator formula', Empire Survey Review, Vol. 

IX, No. 69, pp. 318-22. 

Vincenty, T., (1975).  'Direct and inverse solutions of geodesics on the ellipsoid with 

application of nested equations', Survey Review, Vol. XXII, No. 176, pp. 88-93, 

April 1975. 

 

 

 

 20 


	INTRODUCTION
	THE SURVEY AREA

	 REFERENCES

